Towards Responsible Human-Agent Collectives

<u>Sarvapali D. (Gopal) Ramchurn</u> Professor of Artificial Intelligence Director, Centre for Machine Intelligence

Invited Talk, Thessaloniki, October 2018

Background

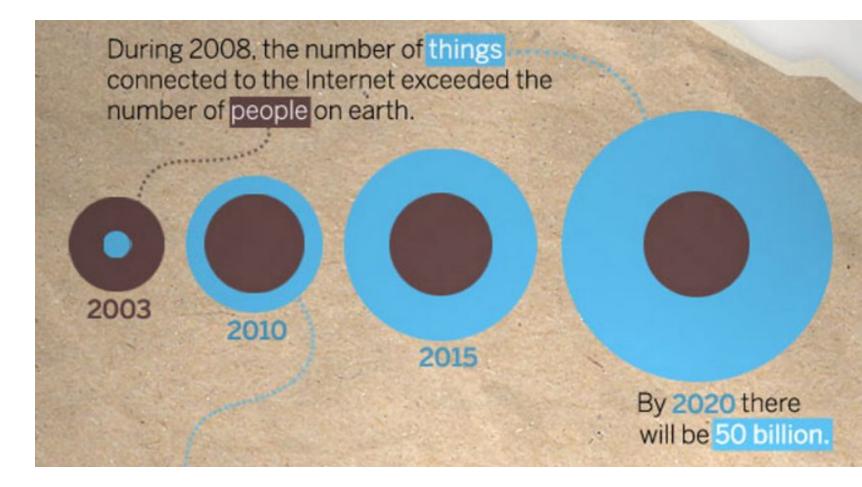
- Professor of AI (2018-) at the University of Southampton
- Director, Centre for Machine Intelligence (2017-)
 - 130+ Researchers
 - Top Group for Impact in the UK
 - 15+ Projects in Al and Machine Learning
- Academic
 - PhD in Multi-Agent Trust and Negotiation (Southampton) 2004
- Advisory roles:
 - UK Cabinet Office (OI team) (2018-)
 - Tech Startups: Engagetech and UTU Kenya
 - Chief Scientist at North Star Solar (2017-)
- Awards:
 - Best Paper/Nominations AAMAS 2010/11,13,15, IJCAI-JAIR
 - AXA Award for Responsible AI (2018)

Projects

- Past Research Projects:
 - ALADDIN (EPSRC BAE 2005-2010)
 - IDEAS: Intelligent Decentralised Energy-aware Systems (SECURE LTD 2009-2013)
 - ORCHID: Foundations of Human-Agent Collectives (EPSRC Programme 2011-2016)
 - SEACORES: Fault-Diagnosis on Ships (I-UK 2015-2016)
 - CharloT: Energy monitoring kit for energy advisors (EPSRC 2015-2017)
 - Human-UAV Teaming (2015-2017)
- Current Projects
 - AXA Responsible AI (2018-2021) £200K
 - Smart Cities and Wearable Tech (EPSRC 2017-2021) £1.2M
 - Autonomous IoT (EPSRC 2016-2019) £800K
 - GCRF BRECCIA (EPSRC 2018-2022) £2.5M

Goals of this Talk

- Explain what human-agent collectives (HACs) are
- Detail some examples of HACs and Applications
- Present some new research directions for Responsible AI/HACs


An Era of Information Ubiquity

Connected

Diverse Sources

Measure everything

Mashed up

More helpful computers for a new way of life

(Jennings et al., 2014)

Proactive

Mixed-reality

Machines as collaborators

Human-Agent Collectives (HACs)

Flexible Autonomy

neither agents, nor humans are always in charge

- Humans act with varying degrees of computer support.
- Agents can act autonomously, other times guided by much closer human involvement.
- Vary depending on context.

Agile Teaming

continually establish and manage collaborative relationships

Groups of agents and humans:

- Come together when needed to achieve goals no individual can achieve in isolation
- **Disband** once cooperative action has been successful.

Incentive Engineering motivate by incentive, rather than diktat

- Design rewards so actions that are encouraged generate desirable outcomes.
- Account for human perception and motivations

Accountable Information Infrastructure track information veracity and provenance

- heterogeneous data that has varying degrees of reliability and accuracy.
- Allow veracity and accuracy of information to be confirmed and audited, while maintaining privacy and ethics standards.

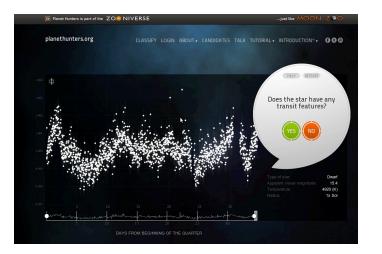
The Telegraph										
Home	Video	New	s World	Sport	Finance	Comment	Culture	Travel 1	Life Won	ien l
Budget	Comp	anies	Comment	Perso	onal Financ	e ISAs l	Economy	Markets	Property	Ente
Shares	Quest	tor 1	Market Repo	ort FT	'SE 100 (Currency <u>(</u>	Commoditie	<u>es</u>		
HOME »	FINANCE	» MAR	KETS							

'Bogus' AP tweet about explosion at the White House wipes billions off US markets

The FBI and SEC are to launch investigations after more than £90bn was temporarily wiped off the US stock market when hackers broke into the Twitter account of the Associated Press and announced that two bombs had exploded at the White House, injuring Barack Obama.

Smart Heating Control

HACs in Smart Energy Systems


Personalised Recommendations & Advice Giving

Electric Vehicle Charging

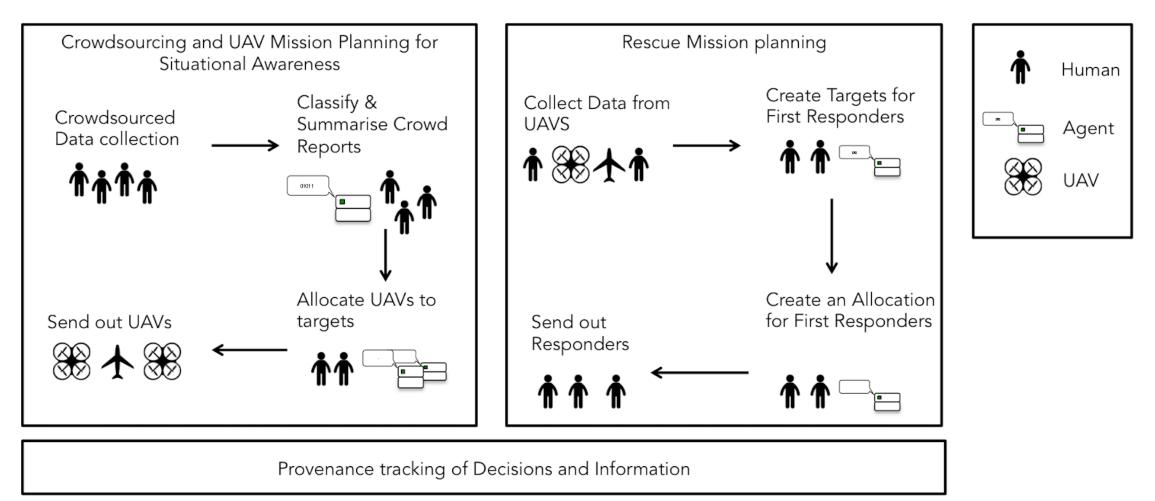
Classifying Galaxies

HACs in Citizen Science

Hunting for Endangered Species

AAMAS Best Paper Applications Track 2015

HACs in Disaster Response


12/01/2010, Port au Prince, Haiti 2010

HAITI Stats

- 230,000--316,000: estimates of the death toll vary.
- 300,000: number of injured
- 1.5 million: people initially displaced
- 85,432: displaced people remain in 123 sites as of September 2014

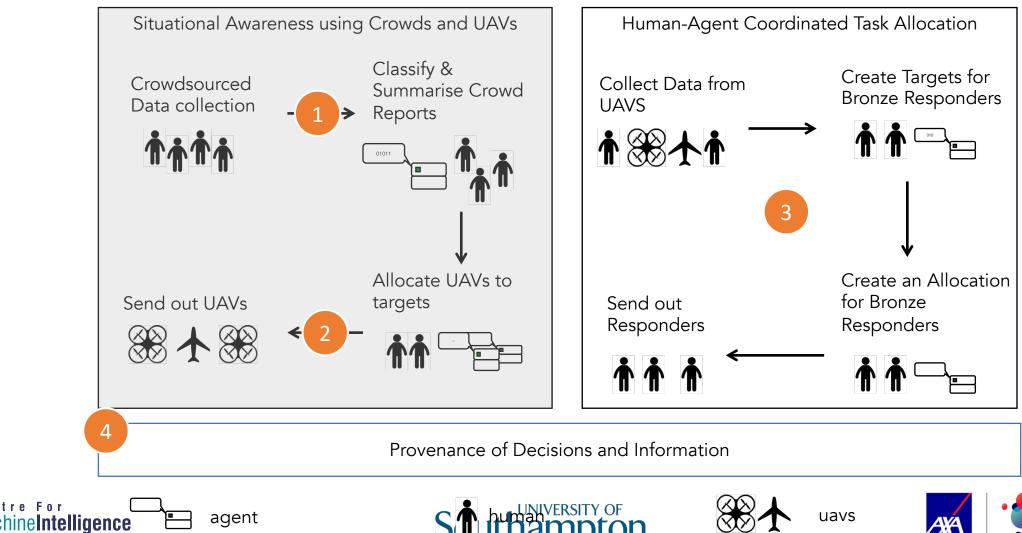
Response in Dollars: \$13.34 billion

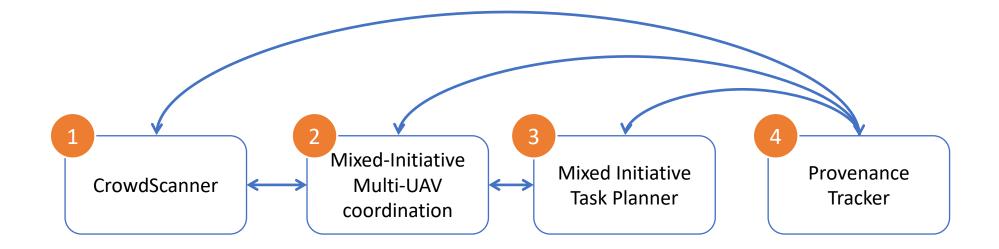
A Disaster Response System based on HACs

How do we LOCATE casualties and resources?

How to ALLOCATE resources?

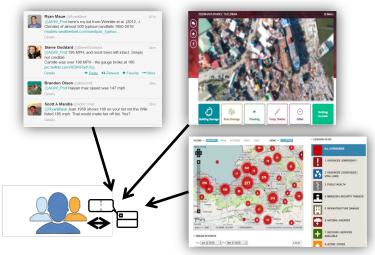
How to **DEPLOY** rescue teams across a large area?

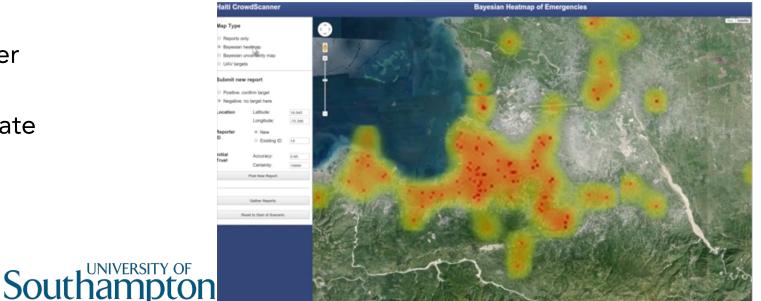

How do we TRUST the information gathered?


Information gathering and coordination loops in HAC-ER

ntre For

HAC-ER Modules

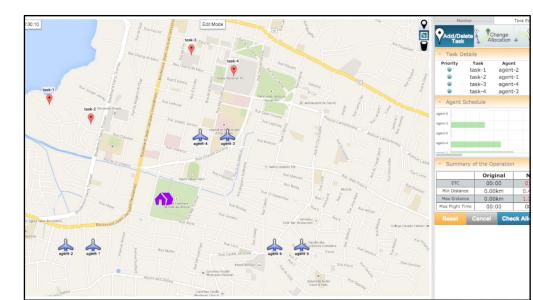




CrowdScanner: making sense of crowd reports using human and machine intelligence

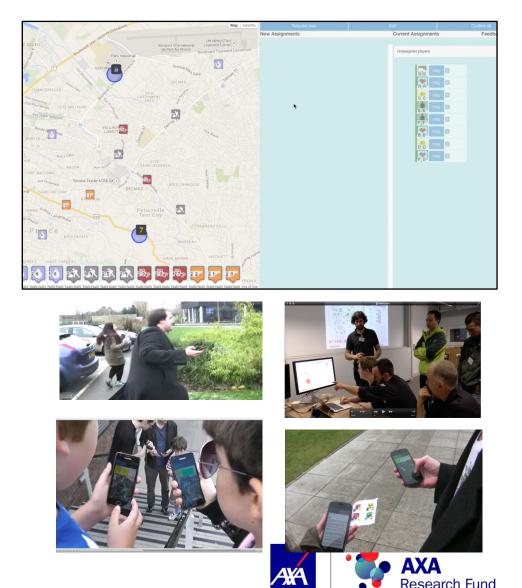
- Interpretation
 - Online (imperfect) Crowds + Machine Learning (BCC+ NLP)
 - Hire+Fire algorithm to recruit the best workers and get the best interpretation
- Heatmap creation
 - Gaussian Process to model disaster
 - Fold in trusted reports
 - Use classification output to generate intensity
- Generate targets for UAVs

Mixed Initiative Multi-UAV Coordination

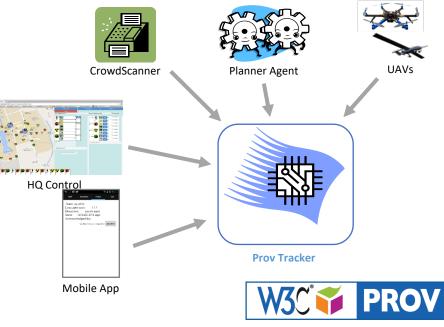

Southampton

- 1 pilot -> 3+ UAVs
- Heterogeneous UAVs running max-sum
- Flexible Autonomy
 - 'Adjust' max-sum plans
 - React to UAV drop-outs
 - Transfer of control between Silver, UAVs, and Bronze operators
- Validated on real UAVs
- Tested with 40 users in Lab
- UAVs Targets confirmed for Responders to be deployed

tre For


nelntelligence

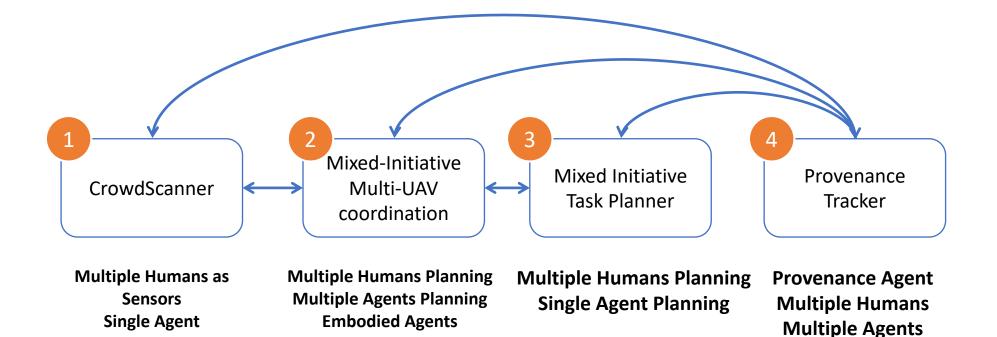
Human-Agent Collaboration for Task Allocation


- Human-Agent Silver team allocate tasks to Bronze responder team
- Agent uses Multi-agent Markov Decision Process
 - Computes best task for each responder, and best path for each task
 - Models environment (buildings and lakes are obstacles)
- Responders get instructions via mobile app
- Trialed in the AtomicOrchid Mixed Reality Game with 100+ users including emergency responders.

Supporting Human and Agent Decision Makers using Provenance

- Timely Decision Support
 - Live monitoring of provenance for changes
 - Ensures the <u>whole system</u> reacts to changes
- Post-hoc analysis

Example:


- During the operation, UAVs invalidate targets,
- Prov tracker immediately notifies Silver commanders at HQ
- Prov tracker identifies impacted rescue missions

HAC Interactional Arrangements

Learning

Southampton

Human-UAV teaming in dynamic and uncertain environments

HAC Challenges

- Organisational challenges: processes and coordination mechanisms.
- Interactional challenges: interfaces and interaction modalities.
- Accountability challenges: human and agent as equal partners

Can we define a methodology to design HACs that are **Responsible**?

What is Responsible AI?

Controllable

Understandable

Trustworthy

Ethical

Reliable

Who makes optimal decisions?

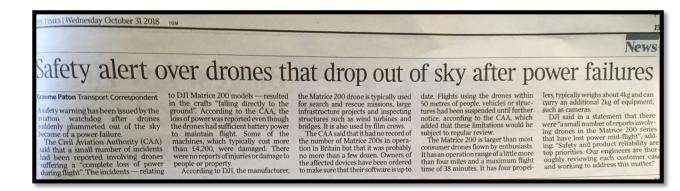
Who is more precise?

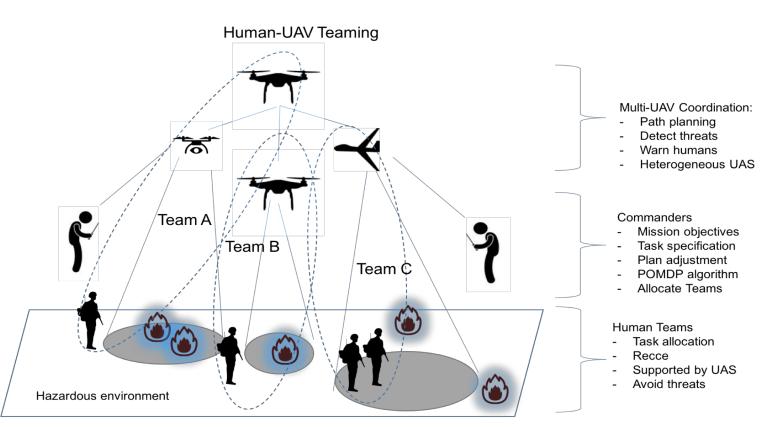
Who makes the right decision?

1. Robots must never harm human beings or through inaction allow a human being to come to harm

2. Robots must always follow instructions from human beings unless they would cause them to violate rule one

 Robots must protect themselves unless it would cause them to violate the other two rules





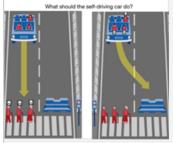
Model Checking for Responsible Swarms

- Define Actions and Consequences
- Ethical behaviour and moral dilemmas
 - Control Dilemma:
 - Let the user fly or not?
 - Save life and Infrastructure:
 - Crash the drone or damage property
 - Do not harm humans
- Decide under uncertainty and dynamism

Algorithms for Fair Load Shedding Problems

- Developing countries have an energy crisis
- Load shedding is essential
- Current load shedding techniques are not particular about fairness
- Can we use predictions of day-ahead consumption and supply to reduce unfairness?

	Grouper Algorithm	Consumption Sorter Algorithm	Random Selector Algorithm	Cost Sorter Algorithm
Motivation	Minimize differences in disconnections	Minimize differences in disconnections & supplied electricity	Minimize differences in disconnections & supplied electricity	Minimize differences in comfort, disconnections & supplied electricity
Description	Random grouping of households & selection of group with least disconnections	Round-robin selection of households based on consumption	Round-robin selection of households in random order	Round-robin selection of households based on cost



Open Questions

- There are no metrics for Responsible Al
- Methodological:
 - Algorithms (e.g., avoid training bias, privacy preserving)
 - Interfaces (e.g., avoid automation bias)
 - Organisations (e.g., guarantee safety and ethical outcomes)
- Challenges:
 - Modelling humans
 - Evaluating interfaces and interactions
 - Incentives to change
 - Dealing with Ethics

Awad et al., (2018) "The Moral Machine Experiment", Nature.

NATURE.COM

The Moral Machine experiment

Responses from more than two million people to an internet-based survey of attitudes towards moral dilemmas that might be faced by autonomous vehicles shed light on similarities

Ž

