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Thank you 

• The Department of Informatics 

• Happy 20-th! 

 

 

• Prof. Yannis Manolopoulos 

• Prof. Kostas Tsichlas 

• Mrs. Nina Daltsidou 
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International-caliber friends 

among AUTH alumni 

• Prof. Evimaria Terzi (U. Boston) 

• Prof. Kyriakos Mouratidis (SMU) 

• Dr. Michalis Vlachos (IBM) 

• … 
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Outline 

• Introduction – Motivation 

• Problem#1: Patterns in graphs 

• Problem#2: Tools 

• Problem#3: Scalability 

• Conclusions 
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Graphs - why should we care? 

Internet Map 

[lumeta.com] 

Food Web 

[Martinez ’91] 
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Graphs - why should we care? 

• IR: bi-partite graphs (doc-terms) 

 

 

• web: hyper-text graph 

 

 

• ... and more: 

D1 

DN 

T1 

TM 

... ... 
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Graphs - why should we care? 

• web-log (‘blog’) news propagation 

• computer network security: email/IP traffic 

and anomaly detection 

• .... 

• [subject-verb-object: graph] 

• Graph == relational table with 2 columns 

(src, dst) 

• BIG DATA – big graphs 
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Outline 

• Introduction – Motivation 

• Problem#1: Patterns in graphs 

– Static graphs 

– Weighted graphs 

– Time evolving graphs 

• Problem#2: Tools 

• Problem#3: Scalability 

• Conclusions 
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Problem #1 - network and graph 

mining 

• What does the Internet look like? 

• What does FaceBook look like? 

 

• What is ‘normal’/‘abnormal’? 

• which patterns/laws hold? 
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Graph mining 

• Are real graphs random? 
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Laws and patterns 

• Are real graphs random? 

• A: NO!! 

– Diameter 

– in- and out- degree distributions 

– other (surprising) patterns 

 

• So, let’s look at the data 
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Solution# S.1 

• Power law in the degree distribution 

[SIGCOMM99] 

log(rank) 

log(degree) 

internet domains 

att.com 

ibm.com 
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Solution# S.1 

• Power law in the degree distribution 

[SIGCOMM99] 

log(rank) 

log(degree) 

-0.82 

internet domains 

att.com 

ibm.com 
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But: 

How about graphs from other domains? 
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More power laws: 

• web hit counts [w/ A. Montgomery] 

Web Site Traffic 

in-degree (log scale) 

Count 

(log scale) 
Zipf 

users 
sites 

``ebay’’ 
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And numerous more 

• Who-trusts-whom (epinions.com) 

• Income [Pareto] –’80-20 distribution’ 

• Duration of downloads [Bestavros+] 

• Duration of UNIX jobs (‘mice and 

elephants’) 

• Size of files of a user 

• … 

• ‘Black swans’ 
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Outline 

• Introduction – Motivation 

• Problem#1: Patterns in graphs 

– Static graphs  

• degree, diameter, eigen,  

• Triangles 

– Time evolving graphs 

• Problem#2: Tools 
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Solution# S.3: Triangle ‘Laws’ 

• Real social networks have a lot of triangles  
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Solution# S.3: Triangle ‘Laws’ 

• Real social networks have a lot of triangles 

– Friends of friends are friends  

• Any patterns? 
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Triangle Law: #S.3  
[Tsourakakis ICDM 2008] 

SN Reuters 

Epinions 
X-axis: degree 

Y-axis: mean # triangles 

n friends -> ~n1.6 triangles 
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Triangle counting for large graphs? 

 

 

 

 

 

 

Anomalous nodes in Twitter(~ 3 billion edges) 

[U Kang, Brendan Meeder, +, PAKDD’11] 
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Triangle counting for large graphs? 

 

 

 

 

 

 

Anomalous nodes in Twitter(~ 3 billion edges) 

[U Kang, Brendan Meeder, +, PAKDD’11] 
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Triangle counting for large graphs? 

 

 

 

 

 

 

Anomalous nodes in Twitter(~ 3 billion edges) 

[U Kang, Brendan Meeder, +, PAKDD’11] 
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Outline 

• Introduction – Motivation 

• Problem#1: Patterns in graphs 

– Static graphs  

– Time evolving graphs 

• Problem#2: Tools 

• … 
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Problem: Time evolution 

• with Jure Leskovec (CMU -> 

Stanford) 

 

 

•  and Jon Kleinberg (Cornell – 

sabb. @ CMU) 
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T.1 Evolution of the Diameter 

• Prior work on Power Law graphs hints 

at   slowly growing diameter: 

– diameter ~ O(log N) 

– diameter ~ O(log log N) 

• What is happening in real data? 
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T.1 Evolution of the Diameter 

• Prior work on Power Law graphs hints 

at   slowly growing diameter: 

– diameter ~ O(log N) 

– diameter ~ O(log log N) 

• What is happening in real data? 

• Diameter shrinks over time 
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T.1 Diameter – “Patents” 

• Patent citation 

network 

• 25 years of data 

• @1999 

– 2.9 M nodes 

– 16.5 M edges 

 

 time [years] 

diameter 
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Outline 

• Introduction – Motivation 

• Problem#1: Patterns in graphs 

• Problem#2: Tools 

– Belief Propagation 

• Problem#3: Scalability 

• Conclusions 
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E-bay Fraud detection 

w/ Polo Chau & 

Shashank Pandit, CMU 

[www’07] 
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E-bay Fraud detection 
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E-bay Fraud detection 
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E-bay Fraud detection - NetProbe 
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Popular press 

 

 

 

 

 

And less desirable attention: 

• E-mail from ‘Belgium police’ (‘copy of 

your code?’) 
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Outline 

• Introduction – Motivation 

• Problem#1: Patterns in graphs 

• Problem#2: Tools 

• Problem#3: Scalability -PEGASUS 

• Conclusions 
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Scalability 

•  Google: > 450,000 processors in clusters of ~2000 

processors each [Barroso, Dean, Hölzle, “Web Search for 

a Planet: The Google Cluster Architecture” IEEE Micro 

2003] 

• Yahoo: 5Pb of data [Fayyad, KDD’07] 

• Problem: machine failures, on a daily basis 

• How to parallelize data mining tasks, then? 

• A: map/reduce – hadoop (open-source clone)  
http://hadoop.apache.org/ 

 

 

http://hadoop.apache.org/
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Outline 

• Introduction – Motivation 

• Problem#1: Patterns in graphs 

• Problem#2: Tools 

• Problem#3: Scalability –PEGASUS 

– Radius plot 

• Conclusions 
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HADI for diameter estimation 

• Radius Plots for Mining Tera-byte Scale 

Graphs U Kang, Charalampos Tsourakakis, 

Ana Paula Appel, Christos Faloutsos, Jure 

Leskovec, SDM’10 

• Naively: diameter needs O(N**2) space and 

up to O(N**3) time – prohibitive (N~1B) 

• Our HADI: linear on E (~10B) 

– Near-linear scalability wrt # machines 

– Several optimizations -> 5x faster 
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???? 

19+ [Barabasi+] 

39 C. Faloutsos (CMU) 

Radius 

Count 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 

• Largest publicly available graph ever studied. 

???? 

19+ [Barabasi+] 
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Radius 

Count 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 

• Largest publicly available graph ever studied. 

???? 

19+? [Barabasi+] 
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Radius 

Count 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 

•7 degrees of separation (!) 

•Diameter: shrunk 

???? 

19+? [Barabasi+] 
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Radius 

Count 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 

Q: Shape? 

???? 
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Radius 

Count 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 

• effective diameter: surprisingly small. 

• Multi-modality (?!) 
AUTH, May 30, 2012 
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Radius Plot of GCC of YahooWeb. 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 

• effective diameter: surprisingly small. 

• Multi-modality: probably mixture of cores . 
AUTH, May 30, 2012 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 

• effective diameter: surprisingly small. 

• Multi-modality: probably mixture of cores . 
AUTH, May 30, 2012 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 

• effective diameter: surprisingly small. 

• Multi-modality: probably mixture of cores . 
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Outline 

• Introduction – Motivation 

• Problem#1: Patterns in graphs 

• Problem#2: Tools 

• Problem#3: Scalability 

• Conclusions 
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OVERALL CONCLUSIONS – 

low level: 

• Several new patterns (shrinking diameters, 

triangle-laws, etc) 

• New tools: 

– Fraud detection (belief propagation) 

• Scalability: PEGASUS / hadoop 
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OVERALL CONCLUSIONS – 

medium-level 

• BIG DATA: Large datasets reveal 
patterns/outliers that are invisible otherwise 
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Project info 
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Google, INTEL, HP, iLab 
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Thank you for the honor! 

• Congratulations for 20-th anniversary 

 

 

and… 

AUTH, May 30, 2012 C. Faloutsos (CMU) 53 



CMU SCS 

High-level conclusion: 

Collaborations 

• Sociology + CS (triangles) 

• Civil engineering + CS (sensor placement) 

• fMRI/medical + graphs (medical db’s) 

• … 
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Never stop learning 
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Socrates Plato Aristotle 

GHRASKW AEI DIDASKOMENOS 


