Mining Large Social Networks: Patterns and Anomalies

Christos Faloutsos CMU

Thank you

- The Department of Informatics
- Happy 20-th!
- Prof. Yannis Manolopoulos
- Prof. Kostas Tsichlas
- Mrs. Nina Daltsidou

International-caliber friends among AUTH alumni

- Prof. Evimaria Terzi (U. Boston)
- Prof. Kyriakos Mouratidis (SMU)
- Dr. Michalis Vlachos (IBM)

Outline

- Introduction - Motivation
- Problem\#1: Patterns in graphs
- Problem\#2: Tools
- Problem\#3: Scalability
- Conclusions

Graphs - why should we care?

\$10s of BILLIONS revenue >500M users

Food Web
[Martinez '91]

Internet Map [lumeta.com]

Graphs - why should we care?

- IR: bi-partite graphs (doc-terms)

- web: hyper-text graph
- ... and more:

Graphs - why should we care?

- web-log ('blog’) news propagation
- computer network security: email/IP traffic and anomaly detection
- [subject-verb-object: \rightarrow graph]
- Graph == relational table with 2 columns (src, dst)
- BIG DATA - big graphs

Outline

- Introduction - Motivation
b. Problem\#1: Patterns in graphs
- Static graphs
- Weighted graphs
- Time evolving graphs
- Problem\#2: Tools
- Problem\#3: Scalability
- Conclusions

Problem \#1 - network and graph mining

- What does the Internet look like?
- What does FaceBook look like?
- What is 'normal'/‘abnormal'?
- which patterns/laws hold?

Graph mining

- Are real graphs random?

Laws and patterns

- Are real graphs random?
- A: NO!!
- Diameter
- in- and out- degree distributions
- other (surprising) patterns
- So, let's look at the data

Solution\# S. 1

- Power law in the degree distribution [SIGCOMM99]

internet domains

Solution\# S. 1

- Power law in the degree distribution [SIGCOMM99]

internet domains

But:

How about graphs from other domains?

More power laws:

- web hit counts [w/ A. Montgomery]

0
users
sites

And numerous more

- Who-trusts-whom (epinions.com)
- Income [Pareto] -'80-20 distribution'
- Duration of downloads [Bestavros+]
- Duration of UNIX jobs ('mice and elephants')
- Size of files of a user
- 'Black swans'

Outline

- Introduction - Motivation
- Problem\#1: Patterns in graphs
- Static graphs
- degree, diameter, eigen,
- Triangles
- Time evolving graphs
- Problem\#2: Tools

Solution\# S.3: Triangle 'Laws'

- Real social networks have a lot of triangles

Solution\# S.3: Triangle 'Laws'

- Real social networks have a lot of triangles
- Friends of friends are friends
- Any patterns?

Triangle Law: \#S. 3 [Tsourakakis ICDM 2008]

AUTH, May 30, 2012
Degree

Triangle counting for large graphs?

Anomalous nodes in Twitter(3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

Triangle counting for large graphs?

Anomalous nodes in Twitter(3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

Triangle counting for large graphs?

Anomalous nodes in Twitter(3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

Outline

- Introduction - Motivation
- Problem\#1: Patterns in graphs
- Static graphs
- Time evolving graphs
- Problem\#2: Tools

Problem: Time evolution

- with Jure Leskovec (CMU -> Stanford)

- and Jon Kleinberg (Cornell sabb. @ CMU)

T. 1 Evolution of the Diameter

- Prior work on Power Law graphs hints at slowly growing diameter:
- diameter ~ $\mathrm{O}(\log \mathrm{N})$
- diameter $\sim \mathrm{O}(\log \log \mathrm{N})$

- What is happening in real data?

T. 1 Evolution of the Diameter

- Prior work on Power Law graphs hints at slowly growing diameter:
- diameter $\sim((\mathrm{H}-\mathrm{N})$
- diameter ~ O (roiog N)

- What is happening in real data?
- Diameter shrinks over time

T. 1 Diameter - "Patents"

- Patent citation network
- 25 years of data
- @ 1999
- 2.9 M nodes
- 16.5 M edges

Outline

- Introduction - Motivation
- Problem\#1: Patterns in graphs
- Problem\#2: Tools
- Belief Propagation
- Problem\#3: Scalability
- Conclusions

E-bay Fraud detection

w/ Polo Chau \& Shashank Pandit, CMU [www'07]

E-bay Fraud detection

E-bay Fraud detection

E-bay Fraud detection - NetProbe

Popular press

The toashington nost
Los Angeles $\mathfrak{C i m e s}$

And less desirable attention:

- E-mail from 'Belgium police' ('copy of your code?')

Outline

- Introduction - Motivation
- Problem\#1: Patterns in graphs
- Problem\#2: Tools
\Rightarrow • Problem\#3: Scalability -PEGASUS
- Conclusions

Scalability

- Google: > 450,000 processors in clusters of ~2000 processors each [Barroso, Dean, Hölzle, "Web Search for a Planet: The Google Cluster Architecture" IEEE Micro 2003]
- Yahoo: 5Pb of data [Fayyad, KDD'07]
- Problem: machine failures, on a daily basis
- How to parallelize data mining tasks, then?
- A: map/reduce - hadoop (open-source clone) http://hadoop.apache.org/

Outline

- Introduction - Motivation
- Problem\#1: Patterns in graphs
- Problem\#2: Tools
- Problem\#3: Scalability -PEGASUS
- Radius plot
- Conclusions

HADI for diameter estimation

- Radius Plots for Mining Tera-byte Scale Graphs U Kang, Charalampos Tsourakakis, Ana Paula Appel, Christos Faloutsos, Jure Leskovec, SDM'10
- Naively: diameter needs $\mathbf{O}\left(\mathbf{N}^{* * 2}\right.$) space and up to $\mathrm{O}\left(\mathrm{N}^{* *} 3\right)$ time - prohibitive ($\mathrm{N} \sim 1 \mathrm{~B}$)
- Our HADI: linear on E (~10B)
- Near-linear scalability wrt \# machines
- Several optimizations -> 5x faster
10^{9}
Count

10^{9}

Count ${ }^{10^{8}}$

YahooWeb graph (120Gb, 1.4B hodes, 6.6 B edges)

- Largest publicly available graph ever studied.

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- Largest publicly available graph ever studied.
10^{9}
Count ${ }^{10^{8}}$

Radius
YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)
$\cdot 7$ degrees of separation (!)
-Diameter: shrunk

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges) Q: Shape?

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- effective diameter: surprisingly small.
- Multi-modality (?!)

Radius Plot of GCC of YahooWeb.

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- effective diameter: surprisingly small.
- Multi-modality: probably mixture of cores .

Conjecture:

$\hat{S D E}$

$28 B R$

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- effective diameter: surprisingly small.
- Multi-modality: probably mixture of cores .

Conjecture:

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- effective diameter: surprisingly small.
- Multi-modality: probably mixture of cores .

Outline

- Introduction - Motivation
- Problem\#1: Patterns in graphs
- Problem\#2: Tools
- Problem\#3: Scalability
\square • Conclusions

OVERALL CONCLUSIONS low level:

- Several new patterns (shrinking diameters, triangle-laws, etc)
- New tools:
- Fraud detection (belief propagation)
- Scalability: PEGASUS / hadoop

OVERALL CONCLUSIONS -medium-level

- BIG DATA: Large datasets reveal patterns/outliers that are invisible otherwise

Project info

www.cs.cmu.edu/~pegasus

Thanks to: NSF IIS-0705359, IIS-0534205, CTA-INARC; Yahoo (M45), LLNL, IBM, SPRINT, Google, INTEL, HP, iLab

Thank you for the honor!

- Congratulations for 20-th anniversary

and...

High-level conclusion: Collaborations

- Sociology + CS (triangles)
- Civil engineering + CS (sensor placement)
- fMRI/medical + graphs (medical db’s)

Never stop learning

$\Gamma Н Р А ~ \Sigma K \Omega$ AEI $\Delta \mathrm{I} \Delta \mathrm{A} \Sigma \mathrm{KOMENO} \Sigma$

Socrates
AUTH, May 30, 2012

Plato

Aristotle

