

Mining Large Social Networks: Patterns and Anomalies

Christos Faloutsos CMU

Thank you

- The Department of Informatics
- Happy 20-th!

- Prof. Yannis Manolopoulos
- Prof. Kostas Tsichlas
- Mrs. Nina Daltsidou

International-caliber friends among AUTH alumni

- Prof. Evimaria Terzi (U. Boston)
- Prof. Kyriakos Mouratidis (SMU)
- Dr. Michalis Vlachos (IBM)

- - -

Outline

- Introduction Motivation
 - Problem#1: Patterns in graphs
 - Problem#2: Tools
 - Problem#3: Scalability
 - Conclusions

Graphs - why should we care?

Leech Little Rock Lake Smallmouth Bass (Camibal) (Camiba

Food Web [Martinez '91]

\$10s of BILLIONS revenue >500M users

Internet Map [lumeta.com]

AUTH, May 30, 2012

Graphs - why should we care?

• IR: bi-partite graphs (doc-terms)

• web: hyper-text graph

• ... and more:

 T_1

0

Ŏ

 D_1

 D_N

00

Graphs - why should we care?

- web-log ('blog') news propagation
- computer network security: email/IP traffic and anomaly detection
- • • •
- [subject-verb-object: → graph]
- Graph == relational table with 2 columns (src, dst)
- BIG DATA big graphs

Outline

- Introduction Motivation
- Problem#1: Patterns in graphs
 - Static graphs
 - Weighted graphs
 - Time evolving graphs
 - Problem#2: Tools
 - Problem#3: Scalability
 - Conclusions

Problem #1 - network and graph mining

- What does the Internet look like?
- What does FaceBook look like?
- What is 'normal'/'abnormal'?
- which patterns/laws hold?

Graph mining

• Are real graphs random?

Laws and patterns

- Are real graphs random?
- A: NO!!
 - Diameter
 - in- and out- degree distributions
 - other (surprising) patterns
- So, let's look at the data

Solution# S.1

• Power law in the degree distribution [SIGCOMM99]

internet domains

Solution# S.1

• Power law in the degree distribution [SIGCOMM99]

internet domains

But:

How about graphs from other domains?

More power laws:

• web hit counts [w/ A. Montgomery]

Ο

And numerous more

- Who-trusts-whom (epinions.com)
- Income [Pareto] –'80-20 distribution'
- Duration of downloads [Bestavros+]
- Duration of UNIX jobs ('mice and elephants')
- Size of files of a user
- •
- 'Black swans'

Outline

- Introduction Motivation
- Problem#1: Patterns in graphs
 - Static graphs
 - degree, diameter, eigen,
 - Triangles
 - Time evolving graphs
- Problem#2: Tools

Solution# S.3: Triangle 'Laws'

• Real social networks have a lot of triangles

Solution# S.3: Triangle 'Laws'

- Real social networks have a lot of triangles
 Friends of friends are friends
- Any patterns?

Triangle Law: #S.3 [Tsourakakis ICDM 2008]

X-axis: degree Y-axis: mean # triangles n friends -> ~ $n^{1.6}$ triangles

20

Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

AUTH, May 30, 2012

Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

AUTH, May 30, 2012

Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

AUTH, May 30, 2012

Outline

- Introduction Motivation
- Problem#1: Patterns in graphs
 - Static graphs
 - Time evolving graphs
- Problem#2: Tools

Problem: Time evolution

 with Jure Leskovec (CMU -> Stanford)

and Jon Kleinberg (Cornell – sabb. @ CMU)

T.1 Evolution of the Diameter

- Prior work on Power Law graphs hints at slowly growing diameter:
 - diameter ~ O(log N)
 - diameter ~ O(log log N)

• What is happening in real data?

T.1 Evolution of the Diameter

- Prior work on Power Law graphs hints at slowly growing diameter:

 - diameter ~ (hg N)
 diameter ~ O(hg N)

- What is happening in real data?
- Diameter shrinks over time

T.1 Diameter – "Patents"

- Patent citation network
- 25 years of data
- @1999
 - 2.9 M nodes
 - 16.5 M edges

Outline

- Introduction Motivation
- Problem#1: Patterns in graphs
- Problem#2: Tools
 - Belief Propagation
- Problem#3: Scalability
- Conclusions

E-bay Fraud detection

w/ Polo Chau & Shashank Pandit, CMU [www'07]

E-bay Fraud detection

AUTH, May 30, 2012

E-bay Fraud detection

AUTH, May 30, 2012

E-bay Fraud detection - NetProbe

AUTH, May 30, 2012

Popular press

The Washington Post Los Angeles Times

And less desirable attention:

• E-mail from 'Belgium police' ('copy of your code?')

AUTH, May 30, 2012

Outline

- Introduction Motivation
- Problem#1: Patterns in graphs
- Problem#2: Tools
- Problem#3: Scalability -PEGASUS
 - Conclusions

Scalability

- Google: > 450,000 processors in clusters of ~2000 processors each [Barroso, Dean, Hölzle, "Web Search for a Planet: The Google Cluster Architecture" IEEE Micro 2003]
- Yahoo: 5Pb of data [Fayyad, KDD'07]
- Problem: machine failures, on a daily basis
- How to parallelize data mining tasks, then?
- A: map/reduce hadoop (open-source clone) http://hadoop.apache.org/

AUTH, May 30, 2012

Outline

- Introduction Motivation
- Problem#1: Patterns in graphs
- Problem#2: Tools
- Problem#3: Scalability –PEGASUS
 - Radius plot
- Conclusions

HADI for diameter estimation

- Radius Plots for Mining Tera-byte Scale Graphs U Kang, Charalampos Tsourakakis, Ana Paula Appel, Christos Faloutsos, Jure Leskovec, SDM'10
- Naively: diameter needs O(N**2) space and up to O(N**3) time – prohibitive (N~1B)
- Our HADI: linear on E (~10B)
 - Near-linear scalability wrt # machines
 - Several optimizations -> 5x faster

AUTH, May 30, 2012

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

• Largest publicly available graph ever studied.

AUTH, May 30, 2012

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- effective diameter: surprisingly small.
- Multi-modality (?!)

AUTH, May 30, 2012

Radius Plot of GCC of YahooWeb.

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- effective diameter: surprisingly small.
- Multi-modality: probably mixture of cores . AUTH, May 30, 2012 C. Faloutsos (CMU)

46

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- effective diameter: surprisingly small.
- Multi-modality: probably mixture of cores .

AUTH, May 30, 2012

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- effective diameter: surprisingly small.
- Multi-modality: probably mixture of cores .

AUTH, May 30, 2012

Outline

- Introduction Motivation
- Problem#1: Patterns in graphs
- Problem#2: Tools
- Problem#3: Scalability
- Conclusions

OVERALL CONCLUSIONS – low level:

- Several new **patterns** (shrinking diameters, triangle-laws, etc)
- New tools:
 - Fraud detection (belief propagation)
- Scalability: PEGASUS / hadoop

OVERALL CONCLUSIONS – medium-level

• **BIG DATA: Large** datasets reveal patterns/outliers that are invisible otherwise

Project info

www.cs.cmu.edu/~pegasus

	Chau, Polo		Koutra Danae	, P	rakash, Aditya	1
Akoglu, Leman		Kang, U		McGlohon Mary	, 	Tong, Hanghang

Thanks to: NSF IIS-0705359, IIS-0534205, CTA-INARC; Yahoo (M45), LLNL, IBM, SPRINT, Google, INTEL, HP, iLab

Thank you for the honor!

• Congratulations for 20-th anniversary

and...

AUTH, May 30, 2012

High-level conclusion: Collaborations

- Sociology + CS (triangles)
- Civil engineering + CS (sensor placement)
- fMRI/medical + graphs (medical db's)

. . .

Never stop learning

ΓΗΡΑΣΚΩ ΑΕΙ ΔΙΔΑΣΚΟΜΕΝΟΣ

Aristotle

Socrates AUTH, May 30, 2012 Plato